The Effect of Donor-Dependent Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells following Focal Cerebral Ischemia in Rats.
نویسندگان
چکیده
Stroke is an ischemic disease caused by clotted vessel-induced cell damage. It is characterized by high morbidity and mortality and is typically treated with a tissue plasminogen activator (tPA). However, this therapy is limited by temporal constraints. Recently, several studies have focused on cell therapy as an alternative treatment. Most researches have used fixed donor cell administration, and hence, the effect of donor-dependent cell administration is unknown. In this study, we administered 3 types of donor-derived human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) in the ischemic boundary zone of the ischemic stroke rat model. We then performed functional and pathological characterization using rotarod, the limb placement test, and immunofluorescent staining. We observed a significant decrease in neuron number, and notable stroke-like motor dysfunction, as assessed by the rotarod test (~40% decrease in time) and the limb placement test (4.5 point increase) in control rats with ischemic stroke. The neurobehavioral performance of the rats with ischemic stroke that were treated with hUCB-MSCs was significantly better than that of rats in the vehicle-injected control group. Regardless of which donor cells were used, hUCB-MSC transplantation resulted in an accumulation of neuronal progenitor cells, and angiogenic and tissue repair factors in the ischemic boundary zone. The neurogenic and angiogenic profiles of the 3 types of hUCB-MSCs were very similar. Our results suggest that intraparenchymal administration of hUCB-MSCs results in significant therapeutic effects in the ischemic brain regardless of the type of donor.
منابع مشابه
Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملP 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes
Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...
متن کاملEffect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats
Stem cell therapies are administered during the acute phase of stroke to preserve the penumbral tissues from ischemic injury. However, the effect of repeated cell therapy during the acute phase remains unclear. In this study, we investigated and compared the functional outcome of single (two days post-injury) and repeated (two and nine days post-injury) treatment with human umbilical cord deriv...
متن کاملMesenchymal stem cells from umbilical cord tissue as potential therapeutics for cardiomyodegenerative diseases – a review
Heart failure is one of the leading causes of death worldwide. End stage disease often requires heart transplantation, which is hampered by donor organ shortage. Tissue engineering represents a promising alternative approach for cardiac repair. For the generation of artificial heart muscle tissue several cell types, scaffold materials and bioreactor designs are under investigation. In this revi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurobiology
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2015